Контроллер GATE-4000N

Паспорт и инструкция по эксплуатации

Оглавление

1.	краткое описание	4
2.	Технические характеристики	4
3.	Общая схема подключения. Режимы работы контроллера	
3	.1 Однодверный режим работы	
	.2. Двухдверный режим работы	
	.3 Турникетный режим работы	
	.4 Шлюзовой режим работы	
4.	Организация контроллера	
5.	Монтаж и подключение контроллера	
С	Основные требования к монтажу контроллера	
	одключение блока питания контроллера	
	одключение исполнительных механизмов (замков)	
П	Іодключение внешних датчиков	1 [.]
П	Іодключение кнопок управления реле	1 [.]
П	Іодключение считывателей	1 [.]
6.	Рабочий режим	13
7.	Время реле, время прохода и контроль открывания двери	14
8.	Автономное программирование	1
9.	Объединение контроллеров в сеть	1
10.	Рекомендации по настройке сети.	19
11.	Комплект поставки	20
12.	Гарантийные обязательства.	20
13.	Свидетельство о приемке	20
14.	Отметка о реализации (продаже)	20
При	ложение 1. Подключение контроллера в однодверном режиме	2
При	ложение 2. Подключение контроллера в турникетном режиме	2
Ппи	ипомение 3. Полипонение контроппера в пруключном режиме	2

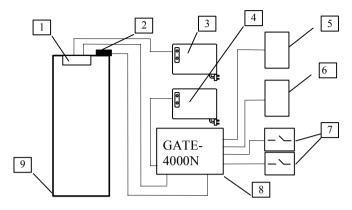
Сертификат соответствия № РОСС RU.ME83.B00963

CERTIFICATE OF CONFORMITY № 00574/101/1/2006/CE

1. Краткое описание.

Контроллер **GATE-4000N** — электронный модуль, предназначенный для управления доступом в жилые и производственные помещения, учета времени прохода и событий.

Контроллер в штатном исполнении работает со считывателями, имеющими выходной протокол «1-Wire» или «Wiegand». Протокол «1-Wire», как правило, применим для считывателей TOUCH MEMORY, а «Wiegand» для считывателей PROXIMITY. Так же, при исполнении контроллера по заказу, возможно подключение считывателей с выходом «АВА2» (для магнитных карт).


Контроллер обрабатывает информацию, поступающую со считывателя, и с помощью встроенного реле осуществляет коммутацию исполнительного устройства (например, замка). Наличие двух дополнительных входов позволяет круглосуточно контролировать две охранные зоны (без контроля по току).

Контроллер может работать как автономно, так и в составе сети. В контроллере предусмотрена функция автономного программирования для его настройки пользователем на работу с кодовыми ключами.

2. Технические характеристики.

Напряжение питания	11,4 B – 13,2 B
Потребляемый ток:	,
в режиме ожидания не более	30 мА
в режиме коммутации не более	90 мА
Кол-во подключаемых считывателей	2
Кол-во управляемых реле	2
Параметры реле:	
коммутируемое напряжение не более	30 VDC
коммутируемый ток не более	6 A
время срабатывания реле (программируется)	от 0.5 сек. до 25 сек.
Макс. емкость банка памяти ключей	
- двухдверное подключение	4072
- однодверное и турникетное подключение	8144
Макс. емкость банка памяти событий	4095
Макс. количество контроллеров в сети	254
Макс. время опознавания последнего ключа	0,5сек. (на 4000 ключей)
Скорость обмена по сети RS485/422	19200 бит/с.
	(57600 бит/с. – под заказ)
Температура окружающей среды	от –30° до +50°С.
Относительная влажность не более	90 %
Габариты, мм	200 x 155 x 40

3. Общая схема подключения. Режимы работы контроллера.

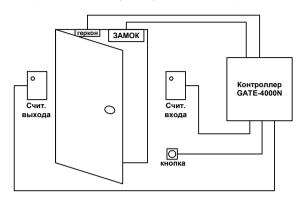
- 1 Дверной замок (электромагнитный или электромеханический)
- 2 Датчик (геркон) двери (контролирует состояние двери)
- 3 Блок питания замка двери (должен соответствовать параметрам замка)
- 4 Блок питания контроллера и считывателей
- 5 Считыватель на входе
- 6 Считыватель на выходе
- 7 Кнопки открывания двери (без предъявления кода ключа)
- 8 Контроллер Gate-4000N
- 9 Контролируемый объект (дверь, турникет, шлагбаум)

На приведенной схеме не все элементы являются обязательными и могут не устанавливаться, если в них нет необходимости (например: геркон-2, считыватель-6, кнопки-7). Окончательный вариант функциональной схемы определяет пользователь для конкретного объекта в соответствии с нижеприведенными схемами подключений

К контроллеру можно подключить два считывателя с выходом «1-Wire» или два считывателя с выходом «Wiegand», которые будут работать независимо друг от друга.

Рекомендуется на контролируемую дверь устанавливать дверной доводчик, возвращающий дверь в исходное (закрытое состояние).

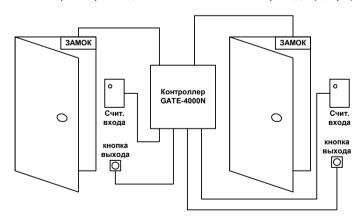
Замок двери и контроллер следует подключать к отдельным источникам питания.


Конкретные варианты подключения контроллера будут различаться в зависимости от используемого режима работы контроллера.

Режимы работы контроллера.

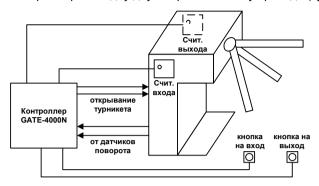
Контроллер может находиться в одном из четырех режимов работы.

3.1 Однодверный режим работы.


Однодверным подключением контроллера в рамках данной инструкции называется подключение контроллера на одну точку прохода (дверь).

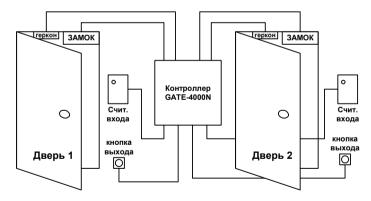
При этом задействовано одно реле, один геркон, два или один считыватель. Контроллер может быть подключен со считывателями на вход и выход или только на вход с выходом по кнопке. В данном варианте подключения обрабатываются все события геркона («Проход совершен», «Проход не был совершен», «Дверь не закрыта», «Дверь закрыта», «Взлом двери»). Используется один банк ключей, максимальная емкость банка — 8144 ключа.

3.2. Двухдверный режим работы.


Двухдверным подключением контроллера в рамках данной инструкции называется подключение контроллера на две независимые точки прохода (двери).

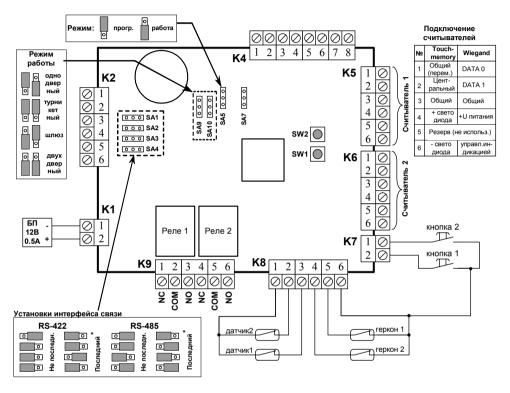
При этом задействовано два реле, два считывателя и две кнопки. Контроллер может быть подключен только со считывателями на вход и с кнопками на выход. Герконы в данном варианте не используются или могут использоваться только для отслеживания события «Взлом двери». Событие «Проход совершен» формируется по факту опознания ключа и срабатывания реле. Используется два независимых банка ключей, максимальная емкость каждого банка — 4072 ключа.

3.3 Турникетный режим работы.


Турникетным подключением контроллера в рамках данной инструкции называется подключение контроллера на одну двухстороннюю точку прохода (турникет).

При этом задействовано два реле, два датчика поворота турникета (вместо геркона), два считывателя (вход и выход). В данном варианте подключения обрабатываются все временные события геркона. Используется один банк ключей, максимальная емкость банка — 8144 ключа.

3.4 Шлюзовой режим работы.


Шлюзовым подключением контроллера в рамках данной инструкции называется подключение контроллера на одну двухдверную точку прохода (шлюз).

При этом задействовано два реле, два геркона, два считывателя. Данный режим используется для организации одностороннего шлюза — тамбура (вход и проход по карточке, выход по кнопкам). Особенностью работы контроллера является аппаратный контроль обоих герконов, при этом если какой-либо из герконов разомкнут (дверь открыта), то работа контроллера с кнопками и считывателями невозможна пока дверь (или двери) не закроют. В данном варианте подключения обрабатываются все события геркона. Используется один банк ключей, максимальная емкость банка — 8144 ключа.

4. Организация контроллера

Контроллер подключается к внешним устройствам и к сети с помощью съемных винтовых разъемов, сгруппированных в колодки по функциональному назначению. Настраивается контроллер с помощью переключателей (джамперов). Расположение на плате контроллера джамперов и колодок с разъёмами и их назначение показано на рисунке.

^{*} данный контроллер последний в сети (подключаются нагрузочные сопротивления встроенные в контроллер).

Внимание!

В случае использования контроллера в режиме "Touch-Memory" контакты колодок К5.1 и К6.1 необходимо соединить с общим проводом (К5.3 и К6.3) перемычками.

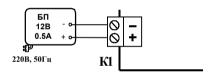
5. Монтаж и подключение контроллера

Основные требования к монтажу контроллера

- **а.** Установка контроллеров и прокладка коммуникационного (сетевого) кабеля должны быть на расстоянии не менее 1м от силовых линий (свыше 10 кВт) и от источников сильных электромагнитных излучений.
- **б.** Не допускается прямое попадание влаги на корпус контроллера в месте его установки.
- **в.** В случае внесения контроллера из холода в теплое помещение перед подключением к источнику питания контроллер необходимо выдержать не менее двух часов при комнатной температуре.

Подключение блока питания контроллера.

Контроллер и подключенные к нему считыватели, как правило, запитываются от одного блока питания.


Для исключения возможности отключения контроллера и считывателей при пропадании сетевого напряжения, желательно использовать источник бесперебойного питания.

Максимальная удаленность блока питания от контроллера зависит от используемого кабеля:

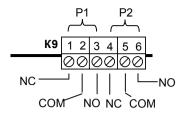
Диаметр провода, мм.	0,5	0,75
Максимальное расстояние), м	5	10

Колодка разъёмов К1

служит для подключения блока питания контроллера и считывателей (+12B, 0,5A)

Правильное подключение блока питания соответствует включению на контроллере красного светодиода.

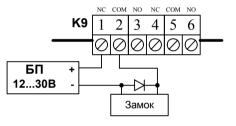
Подключение исполнительных механизмов (замков)

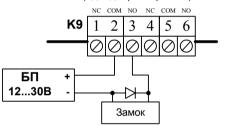

Контроллер рассчитан на подключение <u>к колодке разъемов К9</u> двух исполнительных механизмов (электромагнитных или электромеханических замков и пр.).

Исполнительные механизмы следует запитывать от отдельного источника питания. Провода питания вести отдельным кабелем для исключения влияния электромагнитных импульсов, генерируемых при срабатывании исполнительных механизмов, на работу контроллера. В противном случае стабильная работа контроллера не гарантируется.

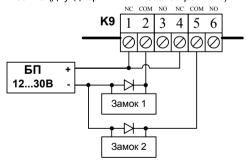
Колодка К9 имеет клеммы "COM", "NO", "NC" для реле P1 и P2. Клемма "COM" – центральный контакт переключающего реле.

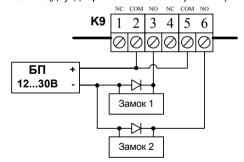
Клемма "NO" – нормально разомкнутый контакт реле.


Клемма "NC" – нормально замкнутый контакт реле.


При подключении к контроллеру электромагнитных или электромеханических замков <u>постоянного тока</u> их необходимо шунтировать диодами для предотвращения залипания выходных контактов реле P1 и P2 (диоды входят в комплект поставки).

Схемы подключения исполнительных механизмов будут различаться в зависимости от типа механизмов и режима работы контроллера. Далее в качестве примеров приведены основные варианты подключения исполнительных механизмов.


Пример 1. Подключение электромагнитного замка (однодверный режим)

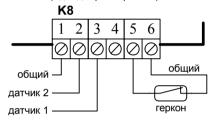

Пример 2. Подключение электромеханического замка (однодверный режим)

Пример 3. Подключение электромагнитного замка (двухдверный и шлюзовой режимы)

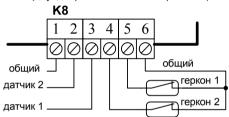
Пример 4. Подключение электромеханического замка (двухдверный и шлюзовой режимы)

Пример 5. Подключение турникета (турникетный режим)

Подключение внешних датчиков

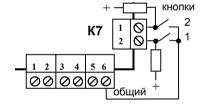

К контроллеру через <u>колодку разъемов К8</u> подключаются два датчика и два геркона.

Сигналы поступающие от датчиков опрашиваются контроллером, который формирует соответствующие им события («тревога1» или «тревога2»).


Герконы, установленные на контролируемом объекте (например, дверь или турникет) определяют его состояние в процессе функционирования и учитываются контроллером при работе. Входы неиспользуемых датчиков необходимо зашунтировать перемычками на общий контакт.

Ниже приведены примеры подключения датчиков и герконов для различных режимов работы контроллера.

Пример 1. Подключение датчиков и герконов (однодверный режим)



Пример 2. Подключение датчиков и герконов (двухдверный и шлюзовой режимы)

Подключение кнопок управления реле

Кнопки управления реле подключаются к контроллеру через колодку разъемов К7.. Кнопка 1 включает реле Р1, Кнопка 2 включает реле Р2.

Входы управления кнопками необходимо шунтировать резисторами 1 кОМ на «плюс» питания считывателей для исключения «ложных» срабатываний при длине провода более чем 3 метра.

Подключение считывателей

Контроллер рассчитан на подключение двух считывателей через **колодки разъ-ёмов К5 и К6**.

Подключаемые считыватели, должны иметь одинаковый тип выхода, или «1-Wire» (Touch-memory), или «Wiegand» (Proximity).

К колодке разъемов К5 подключается считыватель №1, управляющий работой реле Р1.

К колодке разъемов К6 подключается считыватель №2, управляющий работой реле Р1 (для однодверного режима работы) или реле Р2 (для двухдверного, турникетного и шлюзового режимов работы).

Подключение к колодке разъёмов **К5 или К6** для разных вариантов считывателей указано в таблице.

Nº	«1-Wire»	Эмулятор *	«Wiegand-26»	«ABA2»
конт.	(Touch-memory)	Touch-memory	(Proximity)	(Магн. карта)
1	Соединен с общим	Соединен с общим	DATA 0	CLOCK
2	Центральный	DATA 1(0)	DATA 1	DATA
3	Общий считывателя			
4	+ U питания считывателя			
5	Резерв (в данной модификации не используется)			
6**	Световой или(и) звуковой индикатор			

Примечание:

Трассу подключения считывателя **Touch-memory** к контроллеру вести кабелем с диаметром проводов, указанным в таблице:

Диаметр провода, мм.	0,22	0,5	0,75
Расстояние (не более), м.	5	10	15

Считыватели **Proximity** рекомендуется подключать к контроллеру экранированным многожильным сигнальным кабелем с диаметром проводов не менее 0,22 мм. Для увеличения помехоустойчивости сигнала экран кабеля необходимо подключить к клемме «Общий» только со стороны контроллера. Максимальная удаленность считывателя Proximity от контроллера обычно составляет 100 метров (точные данные о диаметрах соединительного кабеля и длинах приводятся в инструкции на считыватель).

^{*}Под эмулятором "touch-memory" следует понимать бесконтактные считыватели, имеющие информационный выход «1-Wire».

^{**} Выход «световой или(и) звуковой индикатор» представляет собой открытый коллектор, соединяющий внешнюю нагрузку с общим проводом через 120 Ом в активном состоянии.

Примеры подключения считывателей

Пример 1: подключение считывателей серии Matrix **Пример 2**: подключение считывателя PW-101 с (Matrix 2(3)-GATE и Matrix 4 с клавиатурой) внешним управлением индикацией

 K5(K6)
 Считыватель PW-101 (с инд.)

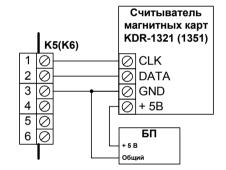
 1
 ∅
 DATA 0

 2
 ∅
 DATA 1

 3
 ∅
 GND

 4
 ∅
 RED LED

 5
 ∅
 + V


 6
 ∅
 GREEN LED

 Ø BEEP

Пример 3: подключение считывателя Touch-Memory с индикацией

Пример 4: подключение считывателя магнитных карт KDR-1321 (1351)

6. Рабочий режим

<u>Рабочий режим</u> является основным режимом работы контроллера. <u>Для установки рабочего режима</u> контроллера необходимо джампер SA5 установить в положение «работа».

В рабочем режиме при касании контактора считывателя ключом *Touch-Memory* или внесении карточки *Proximity* в зону действия считывателя, на время не меньшее 0,5 сек., происходит считывание кода ключа и сравнение его с кодами, хранящимися в энергонезависимой памяти контроллера. Если код ключа имеется в памяти контроллера, то происходит срабатывание соответствующего реле (время срабатывания устанавливается пользователем), и на контроллере загорается зеленый индикатор. В противном случае загорается красный индикатор, и реле не срабатывает.

Для работы контроллера в рабочем режиме его необходимо настроить с помощью режима <u>автономного программирования</u> или с управляющего компьютера (при сетевом подключении контроллера).

7. Время реле, время прохода и контроль открывания двери.

При работе контроллер использует три временных параметра:

- Время реле
- Время прохода
- Время контроля открывания двери

Последние два времени могут устанавливаться только с компьютера (с помощью специализированного программного обеспечения). Время реле может устанавливаться как с компьютера, так и в автономном режиме (режим программирования 4). В зависимости от значений времен возможны два варианта работы:

1) Вариант без использования герконов.

Данный вариант используется в контроллере по умолчанию. Также он принудительно включается при переключении контроллера в двухдверный режим работы.

В данном варианте время прохода равно нулю Значение времени реле однозначно определяет время срабатывания реле, независимо от наличия и состояния контакта геркона (контакты 4, 5 и 6 колодки К8). Разрешающая индикация считывателя при этом включается на 0,5 сек., после чего контроллер готов к обработке следующего ключа. В момент срабатывания реле одновременно с событием разрешения прохода контроллер автоматически генерирует событие «Проход совершен».

2) Вариант с использованием герконов.

Данный вариант включается при записи с компьютера ненулевого времени прохода. При этом время прохода не должно быть меньше, чем время реле!

В данном варианте временные параметры имеют следующее назначение:

Время реле – определяет время срабатывания реле и время выдачи разрешающей индикации на считыватель.

Время прохода — определяет время, начиная с момента срабатывания реле, в течение которого контакт геркона может быть разомкнут без возникновения сигнала тревоги. На это время считыватели и кнопки блокируются. Если по истечении времени прохода контакт геркона не был разомкнут, то формируется событие «Проход не был совершен». Если же контакт геркона размыкается до окончания времени прохода, то формируется событие «Проход совершен», реле выключается, отсчет времени реле и времени прохода прекращается и начинается контроль открывания двери.

Время контроля открывания двери. Отсчитывается с момента санкционированного размыкания контакта геркона (открывания двери). Если по истечении данного времени контакт геркона не замыкается, то формируется событие «Дверь оставлена открытой». Если данное время равно нулю, то контроль открывания двери не производится.

Внимание!

Если в варианте работы с герконами к контакту геркона ничего не было подключено, то время срабатывания реле составит 0,5 сек., независимо от установленного значения времени реле.

8. Автономное программирование

Автономное программирование контроллера состоит из пяти режимов:

- 1. *Запись кода ключа в банк памяти №1 (для считывателя №1) или в банк памяти №2 (для считывателя №2)
- 2. *Удаление имеющегося кода ключа из банка памяти №1 или №2
- *Полная очистка банков памяти ключей №1 или №2 (удаление всех кодов ключей из банков памяти).
- 4. ** Установка времени срабатывания реле Р1 и Р2.
- 5. Установка основных настроек по умолчанию (заводские установки).

Данные режимы программирования следуют последовательно один за другим, т.е. после выхода из одного режима программирования контроллер автоматически переходит в следующий.

Примечания:

*Режим программирования зависит от выбранного режима работы контроллера. В режиме «однодверный», «турникетный» и «шлюзовой» используется один общий банк памяти. В режиме «двухдверный» – два банка памяти.

** Режим программирования зависит от выбранного режима работы контроллера. В режиме «однодверный» используется одно реле. В режиме «турникетный», «шлюзовой» и «двухдверный» – два реле.

Для входа в режим программирования необходимо выключить питание контроллера, установить переключатель **SA5** в положение **«прогр.»**, включить питание контроллера и нажать - отпустить кнопку **SW2**. При этом контроллер через одну секунду перейдет в <u>первый режим программирования.</u>

<u>Для выхода из любого режима программирования</u> достаточно установить переключатель **SA5** в положение **«работа»** и нажать на кнопку **SW1**. При этом контроллер автоматически перейдет в **рабочий режим**.

Процесс программирования можно контролировать с помощью комбинаций включения красного и зеленого индикаторов.

Режим 1. «Запись ключа».

Индикация режима – красный индикатор горит, зеленый погашен. Для записи в банк памяти кода ключа необходимо поднести ключ к соответствующему считывателю (№1 или №2) на время, не меньшее 0,5 сек. Если данный ключ уже присутствует в памяти контроллера (был записан ранее), то показания индикаторов не изменятся. Если нет, то код ключа будет записан в память контроллера, и по окончании записи оба индикатора, мигнув три раза, вернутся в первоначальную индикацию режима. Для остальных ключей процедура выполняется аналогичным образом.

В режиме «однодверный», «турникетный» и «шлюзовой» программируется один общий банк памяти ключей. Программирование осуществляется через считыватель №1. В режиме «двухдверный» программируется два раздельных банка ключей через считыватель №1 и считыватель №2 соответственно.

Для выхода из режима 1 и перехода к режиму 2 необходимо нажать кнопку SW1.

Режим 2. «Удаление имеющегося ключа».

Индикация режима – **красный индикатор погашен**, **зеленый горит**. Для удаления записанного кода ключа необходимо поднести ключ к соответствующему считывателю (№1 или №2) на время, не меньшее 0,5 сек. Если данный ключ отсутствует в

памяти контроллера (был удален ранее), то показания индикаторов не изменятся. Если нет, то ключ будет удален из памяти контроллера, и по окончании удаления оба индикатора, мигнув три раза, вернутся в первоначальную индикацию режима. Для остальных ключей процедура выполняется аналогичным образом.

В режиме «однодверный», «турникетный» и «шлюзовой» программируется один общий банк памяти ключей. Программирование осуществляется через считыватель №1. В режиме «двухдверный» программируется два раздельных банка ключей через считыватель №1 и считыватель №2 соответственно.

Для выхода из режима 2 и перехода к режиму 3 необходимо нажать кнопку SW1.

Режим 3. «Полная очистка банков памяти ключей».

Данный режим используется, если по каким-либо причинам (утрате, замене и т.д.) необходимо удалить из памяти контроллера все записанные ранее ключи.

В режиме «однодверный», «турникетный» и «шлюзовой» очищается один общий банк памяти ключей. В режиме «двухдверный» очищаются два раздельных банка ключей.

Первым очищается банк памяти №1. Индикация режима — красный индикатор мигает, зеленый погашен. Если удаление действительно необходимо, то следует нажать кнопку SW2. При этом оба индикатора погаснут и через 75 сек. мигнут три раза, что свидетельствует об успешной очистке банка памяти №1. После этого оба индикатора 2...3 сек. будут попеременно мигать, а затем вернутся в первоначальную индикацию режима. Это означает готовность контроллера к очистке банка ключей №2.

Процедура очистки банка памяти №2 выполняется аналогично. После завершения очистки банка памяти №2 контроллер автоматически переходит в следующий режим программирования (в режим 4).

Если очистка банка памяти №1 не требуется, то необходимо нажать кнопку **SW1** для перехода контроллера в режим очистки банка памяти №2. Если очистка банка памяти №2 не требуется, то нажмите на кнопку **SW1** для перевода контроллера в четвертый режим программирования.

Режим 4. «Установка времени срабатывания реле» *.

Индикация режима – красный индикатор мигает, зеленый горит.

Сначала устанавливается время срабатывания реле Р1. Контроллер «Gate» позволяет установить время срабатывания реле от 0,5сек. (для электромеханических замков) до 25сек. (для сложных замков с электромоторами). По умолчанию установлено время срабатывания 0,5сек. Для изменения времени нужно нажать и удерживать кнопку SW1. При этом длительность свечения красного индикатора будет увеличиваться, что соответствует увеличению времени срабатывания реле. Для записи в память контроллера нового времени срабатывания надо нажать кнопку SW2. При этом оба индикатора 1...2сек. будут мигать попеременно, новое время срабатывания реле будет записано в память, и контроллер перейдет в режим установки времени срабатывания реле Р2.

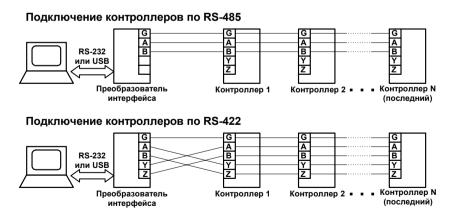
Индикация режима и программирование времени срабатывания реле **P2** полностью аналогичны.

В режиме «однодверный» программируется одно реле. В режиме «турникетный», «шлюзовой» и «двухдверный» – два реле.

Режим 5. «Установка основных настроек по умолчанию (заводские установки)»

Данный режим предназначен для сброса основных настроек контроллера в заводские. При этом:

- 1. Сетевой адрес контроллера устанавливается в «001» (значение по умолчанию). Сетевой адрес контроллера используется для подключения его к информационной сети на основе RS485/RS422. Адрес контроллера является уникальным и находится в диапазоне от 1 до 254. В одной информационной «ветке» не может одновременно существовать два или более контроллеров с одним и тем же адресом.
- **2.** Границы банка (банков) ключей устанавливаются в максимальное значение 8000 (4000) ключей (см. Примечание7).
- **3.** Время прохода* и время контроля открывания двери* устанавливается в «0» секунд.


Индикация режима – **красный и зеленый индикаторы быстро мигают**. Для запуска режима необходимо нажать и отпустить кнопку SW2. При этом оба индикатора мигнут три раза. На этом режим программирования заканчивается.

Если запуск режима не требуется, то нажмите на кнопку **SW1** для перевода контроллера в первый режим программирования.

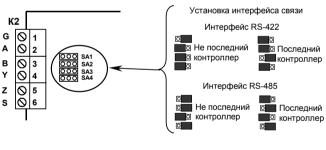
Если автономное программирование завершено, то контроллер можно перевести в рабочий режим (установив переключатель SA5 в положение «работа» и нажав кнопку **SW1**).

9. Объединение контроллеров в сеть

Контроллеры **GATE-N** могут объединяться в сеть и работать под управлением компьютера. Специализированное программное обеспечение (Gate-Local, Gate-Net) позволяет программировать контроллеры, управлять их работой, скачивать события с контроллеров. Однако, решения о предоставлении доступа по ключу всегда принимает сам контроллер, независимо от того, подключен он к компьютеру или нет.

На рисунке приведены два варианта подключения контроллеров к компьютеру. Термин <u>"последний"</u> означает, что контроллер является физически последним в линии связи. Контроллеры объединяются в сеть с использованием интерфейса RS-485 или RS-422 и через преобразователь интерфейса (USB или RS-232) подключаются к компьютеру.

Контроллеры соединяются между собой последовательно друг за другом. Каждый контроллер имеет свой уникальный адрес (в диапазоне от 1 до 254) для обращения к нему компьютера.


Связь контроллеров между собой и с преобразователем выполняется кабелем "витая пара пятой категории". Расстояние между преобразователем и последним контроллером не должно превышать 1200 метров.

Скорость обмена в сети не зависит от типа применяемого интерфейса и составляет 19200 бит/сек.

Перед подключением контроллера к коммуникационной сети необходимо проверить его сетевые установки. К ним относятся: сетевой адрес контроллера и тип интерфейса связи (SA1 - SA4).

Все контроллеры прошедшие производственный отдел технического контроля имеют адрес 001. Если в процессе эксплуатации внутренняя программа самодиагностики контроллера выявляет неисправность или происходит коллизия (конфликт адреса в сети, сбой питания за границами ТУ, воздействие высокого напряжения на сетевые провода и на контроллер и т.д.), контроллер переходит на адрес 255 о чем свидетельствует постоянное свечение зеленого индикатора.

<u>Колодка разъемов К2</u> служит для подключения контроллеров к коммуникационной сети. Тип интерфейса связи задается с помощью джамперов **SA1 – SA4**:

линия A и B – витая пара кабель иния Y и Z – витая пара «витая пара 5 категории» линия G (Общий) - витая пара линия S (общий через 100 ОМ)

Если применяется экранированный кабель, то экран подключается к контактам «G» на каждом контроллере и на плате преобразователя интерфейса. При большом расстоянии между контроллерами и «запитке» контроллеров с разных фаз рекомендуется вместо контакта «G» использовать контакт «S».

10. Рекомендации по настройке сети.

Рекомендуется следующий алгоритм настройки сети, который разберем на примере сети состоящей из десяти контроллеров.

- Шаг1. Монтируем контроллеры, монтируем сеть, соединяя контроллеры последовательно один за другим согласно описанию.
- Шаг2. Проверяем (прозваниваем) правильность подключения сети.
- Шаг3. После проверки снимаем сетевые колодки со всех контроллеров кроме последнего, который устанавливаем в режим «последний в сети»
- Шаг4. Утилитой *Gate-Find* сканируем сеть и находим контроллер с адресом 001. Изменяем найденному контроллеру адрес с 001 на 010.
- Шаг5. Надеваем сетевую колодку на предпоследний контроллер и сканируем сеть.
- Шаг6. Обнаруживаем в сети два контроллера, с адресом 001 и адресом 010. Изменяем адрес 001 на 009.
- Шаг7. Надеваем сетевую колодку на следующий контроллер с конца и сканируем сеть. Находим контроллеры с адресами 001, 009 и 010. Изменяем 001 на 008 и так далее, пока не получим сеть из контроллеров с адресами от 001 до 010.

11. Комплект поставки

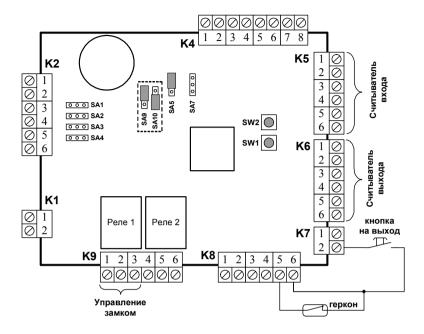
Контроллер в корпусе	- 1 шт.
Паспорт (руководство)	- 1 шт.
Резистор 300 Ом	- 2 шт.
Диод	- 2 шт.
Шуруп	- 2 шт.
Дюбель	- 2 шт.
Vпаковка	- 1 шт

12. Гарантийные обязательства.

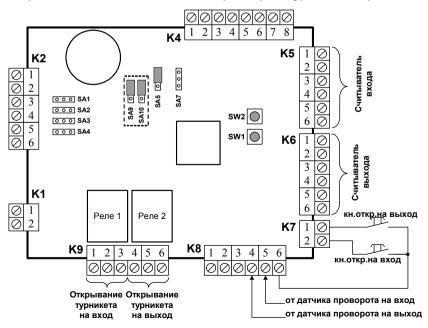
Фирма - изготовитель несет бессрочные гарантийные обязательства на изделие. Основание для прекращения гарантийных обязательств:

- неправильное подключение.
- несоблюдения требований данного руководства.
- наличие механических повреждений.
- стихийное бедствие (гроза и т.д.).
- наличие следов воздействия агрессивных веществ.
- наличие следов постороннего вмешательства.

В течение гарантийного срока Изготовитель бесплатно устраняет неисправности изделия, возникшие по вине Изготовителя, или заменяет неисправные узлы. Элементы питания, исчерпавшие свой ресурс или гарантийный срок, замене не подлежат. Ремонт производится на территории Изготовителя.


Фирма - изготовитель имеет право вносить в конструкцию изделия изменения, не влияющие на основные технические параметры и надежность изделия.

По всем вопросам гарантийного ремонта обращаться к дистрибьюторам системы GATE. Список дистрибьюторов приведен на сайте:


www.skd-gate.ru

13. Свидетельство о приемке	
Дата выпуска	Штамп ОТК
14. Отметка о реализации (продаже) Дата продажи	
Продавец (подпись)	

Приложение 1. Подключение контроллера в однодверном режиме.

Приложение 2. Подключение контроллера в турникетном режиме.

5 3 8 6 7 K4 K5 1 K2 Считыватель 0 2 3 0 0 SA5 2 4 SA7 3 0 0 0 SA1 5 0 0 0 SA2 4 6 0 0 0 SA3 5 0 0 0 SA4 K6 1 6 Считыватель 2 двери 2 3 4 **K**1 5 6 00 кнопка двери 2 Реле 2 Реле 1 K7 1 0 2 K8 K9 2 3 4 | 5 6 6 кнопка двери 1 Управление Управление геркон двери 1 замком . замком двери 1 двери 2

Приложение 3. Подключение контроллера в двухдверном режиме.

Примечание.

Подключение контроллера при работе в режиме шлюза выглядит аналогично.

геркон двери 2